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Abstract

Corpus linguistics lacks strategies for describing and compar-
ing corpora. Currently most descriptions of corpora are textual,
and questions such as ‘what sort of a corpus is this?’, or ‘how
does this corpus compare to that?’ can only be answered
impressionistically. This paper considers various ways in which
different corpora can be compared more objectively. First we
address the issue, ‘which words are particularly characteristic
of a corpus?’, reviewing and critiquing the statistical methods
which have been applied to the question and proposing the use
of the Mann-Whitney ranks test. Results of two corpus com-
parisons using the ranks test are presented. Then, we consider
measures for corpus similarity. After discussing limitations of
the idea of corpus similarity, we present a method for evaluat-
ing corpus similarity measures. We consider several measures
and establish that a χ2-based one performs best. All methods
considered in this paper are based on word and ngram fre-
quencies; the strategy is defended.

1 Introduction

There is a void at the heart of corpus linguistics. The name puts ‘corpus’ at
the centre of the discipline.1 In any science, one expects to find a useful account
of how its central constructs are taxonomised and measured, and how the
subspecies compare. But to date, corpus linguistics has measured corpora
only in the most rudimentary ways, ways which provide no leverage on the
different kinds of corpora there are. The terms it has used for taxonomising
corpora have been unrelated to any measurement: a corpus is described
as “Wall Street Journal” or “transcripts of business meetings” or “foreign
learners’ essays (intermediate grade)”, but if a new corpus is to be com-
pared with  existing ones, there are no methods for quantifying how it stands
in relation to them.
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The lack arises periodically wherever corpora are discussed. If an interest-
ing finding is generated using one corpus, for what other corpora does it
hold? On the  mailing list (http://www.hd.vib.no/corpora), the issue
is aired every few months. Recently it arose in relation to the size of corpus
that had to be gathered to test certain hypotheses: a reference was made to
Biber (1990 and 1993a) where corpus sizes for various tasks are discussed.
The next question is, what sort of corpus did Biber’s figures relate to? If the
corpus is highly homogeneous, less data will be required. But there are no
established measures for homogeneity.

Two salient questions are “how similar are two corpora”, and “in what
ways do two corpora differ?” The second question has a longer history to
it, so is taken first. Researchers have wanted to answer it for a variety
of reasons, in a variety of academic disciplines. In the first part of the
paper, the statistical and other techniques used in linguistics, social science,
information retrieval, natural language processing and speech processing
are critically reviewed.

Almost all the techniques considered work with word frequencies. While
a full comparison between any two corpora would of course cover many
other matters, the concern of this paper is with the statistical framework.
Reliable statistics depend on features that are reliably countable and,
foremost amongst these, in language corpora, are words.

The first part of the paper surveys and critiques the statistical methods
which have been applied to finding the words which are most characteristic
of one corpus as against another, and identifies the Mann-Whitney
ranks test as a suitable technique. The next part goes on to use it to com-
pare British and American English, and male and female conversational
speech.

We then move on to address corpus similarity directly. Measures
are needed not only for theoretical and research work, but also to address
practical questions that arise wherever corpora are used: is a new corpus
sufficiently different from available ones, to make it worth acquiring? When
will a grammar based on one corpus be valid for another? How much will it
cost to port a Natural Language Processing (NLP) application from one
domain, with one corpus, to another, with another? Various measures for
corpus similarity (and homogeneity) are proposed, a strategy for evaluating
the measures is presented and the measures are evaluated.

2 Which words are particularly characteristic of
a corpus (or text)?

In the simplest formulation of the problem, we ignore the internal structure
of the corpora, so the corpora could be single texts, and are referred to as
such below. For two texts, which words best characterise their differences?
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For word w in texts X and Y, this might be represented in a contingency
table as in Table 1.

There are a occurrences of w in text X (which contains a + c words) and
b in Y (which has b + d words).

Measuring the distinctiveness of words in corpora is, for some purposes,
homologous to measuring the distinctiveness of combinations of words in a
corpus (e.g. bigrams and similar). Daille (1995) presents a review and assess-
ment of measures of strength of co-occurrence, in a paper which can be
seen as a complement to this one. She considers a wider range of measures,
but her best candidates are considered here. For bigrams, the columns are
for ω2 and not-ω2 rather than text X and text Y, and the window of words
within which ω and ω2 must both occur for it to count as a co-occurrence
must also be defined.

2.1 The χχχχχ 2-test

We now need to relate our question to a hypothesis we can test. A first
candidate is the null hypothesis that both texts comprise words drawn
randomly from some larger population; for a contingency table of dimen-
sions m × n, if the null hypothesis is true, the statistic:

  

(   )O E
E
−∑

2

(where O is the observed value, E is the expected value calculated on the
basis of the joint corpus, and the sum is over the cells of the contingency
table) will be χ2-distributed with (m – 1) × (n – 1) degrees of freedom.2 For
our 2 × 2 contingency table the statistic has one degree of freedom and
Yate’s correction is applied, subtracting 1/2 from |O – E | before squaring.
Wherever the statistic is greater than the critical value of 7.88, we conclude
with 99.5% confidence that, in terms of the word we are looking at, X and Y
are not random samples of the same larger population.

This is the strategy adopted by Hofland and Johansson (1982), Leech and
Fallon (1992), to identify where words are more common in British than
American English or vice versa. X was the Lancaster-Oslo-Bergen (LOB)
corpus, Y was the Brown, and, in the table where the comparison is made,

Table 1 Basic contingency table.

X Y

w a b a + b
not w c d c + d

a + c b + d a + b + c + d = N
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words are marked a where the null hypothesis was defeated with 99.9%
confidence, b where it was defeated with 99% confidence, and c where it was
defeated with 95% confidence. Rayson, Leech, and Hodges (1997) use the
χ2 similarly for the analysis of the conversation component of the British
National Corpus (BNC).3

Looking at the LOB-Brown comparison, we find that this is true for very
many words, and for almost all very common words. Much of the time, the
null hypothesis is defeated. At a first pass, this would appear to demonstrate
that all those words have systematically different patterns of usage in British
and American English, the two types that the two corpora were designed to
represent. A first experiment was designed to check whether this was an
appropriate interpretation.

2.2 Experiment: same-genre subsets of the BNC

If the χ2-test was picking up on interesting differences between the corpora,
then, if there were no such differences, the null hypothesis would not be
defeated. To test this, I took two corpora which were indisputably of the
same language type: each was a random subset of the written part of
the British National Corpus (BNC). The sampling was as follows: all texts
shorter than 20,000 words were excluded. This left 820 texts. Half the
texts were then randomly assigned to each of two subcorpora.

If we randomly assign words (as opposed to documents) to the one corpus
or the other, then we have a straightforward random distribution, with
the value of the χ2-statistic equal to or greater than the 99.5% confidence
threshold of 7.88 for just 0.5% of words. The average value of the error
term,

( |O – E | – 0.5)2/E

is then 0.5.4 The hypothesis can, therefore, be couched as: are the error
terms systematically greater than 0.5? If they are, we should be wary of
attributing high error terms to significant differences between text types,
since we also obtain many high error terms where there are no significant
differences between text types.

Frequency lists for word-POS pairs for each subcorpus were generated.
For each word occurring in either subcorpus, the error term which would
have contributed to a chi-square calculation was determined. As Table 2
shows, average values for the error term are far greater than 0.5, and tend to
increase as word frequency increases.

As the averages indicate, the error term is very often greater than 0.5 ×
7.88 = 3.94, the relevant critical value of the chi-square statistic. As in the
LOB-Brown comparison, for very many words, including most common
words, the null hypothesis is defeated.
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2.2.1 Discussion

This reveals a bald, obvious fact about language. Words are not selected at
random. There is no a priori reason to expect them to behave as if they had
been, and indeed they do not. The LOB-Brown differences cannot in gen-
eral be interpreted as British-American differences: it is in the nature of
language that any two collections of texts, covering a wide range of registers
(and comprising, say, less than a thousand samples of over a thousand
words each) will show such differences. While it might seem plausible that
oddities would in some way balance out to give a population that was
indistinguishable from one where the individual words (as opposed to the
texts) had been randomly selected, this turns out not to be the case.

Let us look closer at why this occurs. A key word in the last paragraph
is ‘indistinguishable’. In hypothesis testing, the objective is generally to see
if the population can be distinguished from one that has been randomly
generated—or, in our case, to see if the two populations are distinguish-
able from two populations which have been randomly generated on the
basis of the frequencies in the joint corpus. Since words in a text are not
random, we know that our corpora are not randomly generated. The only
question, then, is whether there is enough evidence to say that they are
not, with confidence. In general, where a word is more common, there
is more evidence. This is why a higher proportion of common words
than of rare ones defeat the null hypothesis. As one statistics textbook
puts it:

Table 2 Comparing two same-genre corpora using χ2: Mean error term is far
greater than 0.5, and increases with frequency. POS tags are drawn from the
CLAWS-5 tagset as used in the BNC: see http:/info.ox.ac.uk/bnc.

First item in class
Class Mean error term
(Words in freq. order) word POS for items in class

First 10 items the DET 18.76
Next 10 items for PRP 17.45
Next 20 items not XX 14.39
Next 40 items have VHB 10.71
Next 80 items also AV0 7.03
Next 160 items know VVI 6.40
Next 320 items six CRD 5.30
Next 640 items finally AV0 6.71
Next 1280 items plants NN2 6.05
Next 2560 items pocket NN1 5.82
Next 5120 items represent VVB 4.53
Next 10240 items peking NP0 3.07
Next 20480 items fondly AV0 1.87
Next 40960 items chandelier NN1 1.15
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None of the null hypotheses we have considered with respect to
goodness of fit can be exactly true, so if we increase the sample size
(and hence the value of χ2) we would ultimately reach the point
when all null hypotheses would be rejected. All that the χ2 test can
tell us, then, is that the sample size is too small to reject the null
hypothesis!

(Owen and Jones 1977: 359)

For large corpora and common words, the sample size is no longer too
small.

The χ2-test can be used for all sizes of contingency tables, so can be used
to compare two corpora in respect of a set of words, large or small, rather
than one-word-at-a-time. In all the experiments in which I have compared
corpora in respect of a substantial set of words, the null hypothesis has been
defeated (by a huge margin).

The original question was not about which words are random but
about which words are most distinctive. It might seem that these are con-
verses, and that the words with the highest values for the error term—those
for which the null hypothesis is most soundly defeated—will also be the ones
which are most distinctive to one corpus or the other. Where the overall
frequency for a word in the joint corpus is held constant, this is valid, but as
we have seen, for very common words, high χ2 values are associated with
the sheer quantity of evidence and are not necessarily associated with a pre-
theoretical notion of distinctiveness (and for words with expected frequency
less than 5, the test is not usable).

2.3 Mann-Whitney ranks test

The Mann-Whitney (also known as Wilcoxon) ranks test can be applied to
corpus data if the two corpora are first divided into same-sized samples.
Then the numbers of occurrences of a word are directly comparable across
all samples in both corpora. The test addresses the null hypothesis—that all
samples are from the same population—by seeing whether the counts from
the samples in the one corpus are usually bigger than ones from the other,
or usually smaller, or similarly spread. The frequencies of word w in each
sample are labelled with the corpus they come from, put in rank order, and
numbered from 1 to m + n (where there are m samples in the one corpus
and – in the other) according to their rank. All the ranks of items coming
from the smaller corpus are summed. The sum is then compared with the
figure that would be expected on the basis of the null hypothesis, as tabu-
lated in statistics textbooks.

To demonstrate: suppose corpora X and Y have been divided into five
equal-sized parts. We count the frequencies of a given word in each of the
ten parts, five of X and 5 of Y, and rank them, as in Table 3.
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The sum of ranks associated with the corpus with the smaller number of
samples, here 24, is compared with the value that would be expected, on the
basis of the null hypothesis. If the null hypothesis were true, the tables tell
us that 95% of the time the statistic would be in the range 18.37–36.63: 24 is
within this range, so there is no evidence against the null hypothesis.

Note that the one very high count of 88 has only limited impact on the
statistic. This is the desired behaviour for our task, since it is of limited interest
if a single document in a corpus has very many occurrences of a word.

Sections 6.1 and 6.2 describe the use of rank-based statistics to find
characteristic words in LOB vs. Brown, and in male vs. female speech.

2.4 t-test

The (unrelated) t-test, which operates on counts rather than on rank order
of counts, could also be applied to frequency counts from two corpora
divided into same-size samples. However the t-test is only valid where the
data is normally distributed, which is not in general the case for word
counts (see below). The Mann-Whitney test has the advantage of being non-
parametric, that is, making no assumptions about the data obeying any
particular distribution.

2.5 Mutual information

Another approach uses the Mutual Information (MI) statistic (Church and
Hanks 1989). This simply takes the (log of the) ratio of the word’s relative
frequency in one corpus to its relative frequency in the joint corpus. In
terms of Table 1:

    
MI

a
a c

N
a bXω,   log

  
  

  
=

+
×

+




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This is an information theoretic measure (with relative frequencies serving
as maximum likelihood estimators for probabilities) as distinct from one
based in statistical hypothesis testing, and it makes no reference to hypo-
theses. Rather, it states how much information word w provides about
corpus X (with respect to the joint corpus). It was introduced into language

Table 3 Mann-Whitney ranks test.

Count: 3 3 12 13 15 18 24 27 33 88 TOTAL
Corpus: Y Y X Y X X X Y Y X
Rank (X) 3 5 6 7 10 31
Rank (Y) 1 2 4 8 9 24



239

   

engineering as a measure for co-occurrence, where it specifies the informa-
tion one word supplies about another.5

Church and Hanks state that MI is invalid for low counts, suggesting a
threshold of 5. In contrast to χ2, there is no notion in MI of evidence
accumulating. MI, for our purposes, is a relation between two corpora and
a word: if the corpora are held constant, it is usually rare words which give
the highest MI. This contrasts with common words tending to have the
highest χ2 scores. Church and Hanks proposed MI as a tool to help lexico-
graphers isolate salient co-occurring terms. Several years on, it is evident
that MI overemphasises rare terms, relative to lexicographers’ judgements
of salience, while χ2 correspondingly overemphasises common terms.

2.6 Log-likelihood (G2)

Dunning (1993) is concerned at the invalidity of both χ2 and MI where
counts are low. The word he uses is ‘surprise’; he wants to quantify how
surprising various events are. He points out that rare events, such as the
occurrence of many words and most bigrams in almost any corpus, play a
large role in many language engineering tasks yet in these cases both MI
and χ2 statistics are invalid. He then presents the log-likelihood statistic,
which gives an accurate measure of how surprising an event is even where it
has occurred only once. For our contingency table, it can be calculated as:

G2 = 2(a log(a) + b log(b) + c log(c) + d log(d )
− (a + b)log(a + b) – (a + c)log(a + c)
− (b + d )log(b + d ) – (c + d )log(c + d )
+ (a + b + c + d )log(a + b + c + d ) )

Daille (1995) determines empirically that it is an effective measure for
finding terms. In relation to our simple case, of finding the most surprisingly
frequent words in a corpus without looking at the internal structure of the
corpus, G2 is a mathematically well-grounded and accurate measure of
surprisingness, and early indications are that, at least for low and medium
frequency words such as those in Daille’s study, it corresponds reasonably
well to human judgements of distinctiveness.6

2.7 Fisher’s exact test

Pedersen (1996) points out that log-likelihood approximates the probability
of the data having occurred, given the null hypothesis, while there is a
method for calculating it exactly: Fisher’s Exact method. The machinery
for computing it is available on various mathematical statistics packages. For
very low counts, there is significant divergence between log-likelihood and
the exact probability.



240

     

2.8 TF.IDF

The question, “Which words are particularly characteristic of a text?” is
at the heart of information retrieval (IR). These are the words which will
be the most appropriate key words and search terms. The general IR prob-
lem is to retrieve just the documents which are relevant to a user’s query,
from a database of many documents.7

A very simple method would be to recall just those documents containing
one or more of the search terms. Since the user does not want to be swamped
with ‘potentially relevant’ documents, this method is viable only if none
of the search terms occur in many documents. Also, one might want to rank
the documents, putting those containing more of the search terms at the top
of the list. This suggests two modifications to the very simple method which
give us the widely-used TF.IDF (term frequency by inverse document
frequency) statistic (Salton 1989: 280 and references therein). Firstly a search
term is of more value, the fewer documents it occurs in: IDF (inverse
document frequency) is calculated, for each term in a collection, as the log
of the inverse of the proportion of documents it occurs in. Secondly, a term
is more likely to be important in a document, the more times it occurs in it:
TF for a term and a document is simply the number of times the term
occurs in the document.

Now, rather than simply registering a hit if there are any matches between
a query term and a term in a document, we accumulate the TF.IDF scores
for each match. We can then rank the hits, with the documents with the
highest summed TF.IDF coming at the top of the list. This has been found
to be a successful approach to retrieval (Robertson and Sparck Jones 1994).8

Two considerations regarding this scheme are:

• As described so far, it does not normalise for document length. In IR
applications, TF is usually normalised by the length of the document.
The discussion above shows that this is not altogether satisfactory.
A single use of a word in a hundred-word document is far less note-
worthy than ten uses of the word in a thousand-word document, but,
if we normalise TF, they become equivalent.

• Very common words will be present in all documents. In this case, IDF
= log 1 = 0 and TF.IDF collapses to zero. This point is not of particular
interest to IR, as IR generally puts very common words on a stop
list and ignores them, but it is a severe constraint on the generality of
TF.IDF.

3 Probability distributions for words

As Church and Gale (1995) say, words come in clumps; unlike lightening, they
often strike twice. Where a word occurs once in a text, you are substantially
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more likely to see it again than if it had not occurred once. Once a corpus is
seen as having internal structure—that is, comprising distinct texts—the
independence assumption is unsustainable.

Some words are ‘clumpier’ or ‘burstier’ than others; typically content
words are clumpier than grammatical words. The ‘clumpiness’ or ‘burstiness’
of a particular word is an aspect of its behaviour which is important for
many language-engineering and linguistic purposes, and in this section we
sketch various approaches to modelling and measuring it.

The three probability distributions which are most commonly cited in the
literature are the poisson, the binomial, and the normal. (Dunning refers to
the multinomial, but for current purposes this is equivalent to the binomial.)
The normal distribution is most often used as a convenient approximation
to the binomial or poisson, where the mean is large, as justified by the
Central Limit Theorem. For all three cases (poisson, binomial, or normal
approximating to either) the distribution has just one parameter. Mean and
variance do not vary independently: for the poisson they are equal, and for
the binomial, if the expected value of the mean is p, the expected value
of the variance is p(1 – p).

To relate this to word-counting, consider the situation in which there
are a number of same-length text samples. If words followed a poisson or
binomial distribution then if a word occurred, on average, c times in a
sample, the expected value for the variance of hits-per-sample is also c
(or, in the binomial case, slightly less: the difference is negligible for all
but the most common words). As various authors have found, this is
not the case. Most of the time, the variance is greater than the mean.
This was true for all but two of the 5,000 most common words in the
BNC.9

3.1 Poisson mixtures

Following Mosteller and Wallace (1964), Gale and Church identify Poisson
models as belonging to the right family of distributions for describing word
frequencies, and then generalise so that the single poisson parameter is itself
variable and governed by a probability distribution. A ‘poisson mixture’
distribution can then be designed with parameters set in such a way that, for
a word of a given level of clumpiness and overall frequency in the corpus,
the theoretical distribution models the number of documents it occurs in
and the frequencies it has in those documents.

They list a number of ways in which clumping—or, more technically,
‘deviation from poisson’—can be measured. IDF is one, variance another,
and they present three more. These empirical measures of clumpiness can
then be used to set the second parameter of the poisson-mixture probability
model. They show how these improved models can be put to work within a
Bayesian approach to author identification.
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3.2 TERMIGHT and Katz’s model

Justeson and Katz (1995) and Katz (1996) present a more radical account of
word distributions. The goal of their T system was to identify and
index all the terms worth indexing in a document collection. They note the
simple fact that a topical term—a term denoting what a document or part of
a document was about—occurs repeatedly in documents about that topic.
T identifies terms by simply finding all those words and phrases of
the appropriate syntactic shape (noun phrases without subordinate clauses)
which occur more than once in a document. Katz (1996) takes the theme
further. He argues that word frequencies are not well modelled unless we
take into account the linguistic intuition that a document is or is not about
a topic, and that that means documents will tend to have zero occurrences
of a term, or multiple occurrences. For terms, documents containing exactly
one occurrence of a term will not be particularly common. Katz models
word probability distributions with three parameters: first, the probability
that it occurs in a document at all (document frequency), second, the prob-
ability that it will occur a second time in a document given that it has occurred
once, and third, the probability that it will occur another time, given that it
has already occurred k times (where k > 1). Thus the first parameter (which
is most closely related to the pre-theoretical idea of a word being in more or
less common usage) is independent of the second and third (which address
how term-like the word is). Katz argues that, for true terms, the third
parameter is very high, approaching unity: where a term has already occurred
twice or more in a document, it is the topic of the document, so we should
not be surprised if it occurs any number of further times.

Katz establishes that his model provides a closer fit to corpus data than a
number of other models for word distributions that have been proposed,
including Poisson mixtures.

3.3 Adjusted frequencies

The literature includes some proposals that word counts for a corpus should
be adjusted to reflect clumpiness, with a word’s frequency being adjusted
downwards, the clumpier it is. The issues are described in Francis and Kumera
(1982: 461–464). Francis and Kumera use a measure they call AF, attributed
(indirectly) to J. Lanke of Lund University. It is defined as:

    

AF  ( ) /=



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where the corpus is divided into n categories (which could be texts but, in
Francis and Kumera’s analysis, are genres, each of which contain numerous
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texts); di is the proportion of the corpus in that category; and xi is the count
for the word in the category.

Adjusting frequencies is of importance where the rank order is to be
used directly for some purpose, for example, for choosing vocabulary
for language-teaching, or in other circumstances where a single-parameter
account of a word’s distribution is wanted. Here, I mention it for purposes
of completeness. A two- or three-parameter model as proposed by Church
and Gale or Katz gives a more accurate picture of a word’s behaviour than
any one-parameter model.

4 Summary statistics for human interpretation

4.1 Content analysis

Content analysis is the social science tradition of quantitative analysis
of texts to determine themes. It was particularly popular in the 1950s
and 60s, a landmark being the General Enquirer (Stone et al. 1966), an early
computerised system. Studies using the method have investigated a great
range of topics, from analyses of propaganda and of changes in the tone
of political communiqués over time, to psychotherapeutic interviews
and the social psychology of interactions between management, staff
and patients in nursing homes. The approach is taught in social science
‘methods’ courses, and used in political science (Fan 1988), psychology
(Smith 1992) and market research (Wilson and Rayson 1993). The basic
method is to:

• identify a set of ‘concepts’ which words might fall into, on the basis of
a theoretical understanding of the situation;

• classify words into these concepts, to give a content analysis dictionary;
• take the texts (these will often be transcribed spoken material);
• for each text, count the number of occurrences of each concept.

One recent scheme, Minnesota Contextual Content Analysis (McTavish
and Pirro 1990, MCCA), uses both a set of 116 concepts and an additional,
more general level of 4 ‘contexts’. Norms for levels of usage of each concept
come with the MCCA system, and scores for each concept are defined by
taking the difference between the norm and the count for each concept-text
pair (and dividing by the standard deviation of the concept across contexts).
The concept scores are then directly comparable, between concepts and
between texts. The approach is primarily descriptive: it provides a new
way of describing texts, which it is then for the researcher to interpret and
explain, so MCCA does nothing more with the concept scores.

It does however also provide the context scores. These serve several
purposes, including
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[to] contribute to a kind of “triangulation”, which would help to
locate any potential text in relation to each of the “marker” contexts.

(p. 250)

The validity of this kind of analysis is to be found in its predictive power.
A content analysis study of open-ended conversations between husbands
and wives was able to classify the couples as ‘seeking divorce’, ‘seeking out-
side help’, or ‘coping’ (McDonald and Weidetke 1979, quoted in McTavish
and Pirro: 260).

4.2 Multi-dimensional analysis

A major goal of sociolinguistics is to identify the main ways in which
language varies, from group to group and context to context. Biber (1988
and 1995) identifies the main dimensions of variation for English and three
other languages using the following method:

• Gather a set of text samples to cover a wide range of language varieties;
• Enter them (“the corpus”) into the computer;
• Identify a set of linguistic features which are likely to serve as discrim-

inators for different varieties;
• Count the number of occurrences of each linguistic feature in each text

sample;
• Perform a factor analysis (a statistical procedure) to identify which

linguistic features tend to co-occur in texts. The output is a set of
“dimensions”, each of which carry a weighting for each of the linguistic
features;

• Interpret each dimension, to identify what linguistic features, and
what corresponding communicative functions, high-positive and high-
negative values on the dimension correspond to.

For English, Biber identifies seven dimensions, numbered in decreasing order
of significance (so dimension 1 accounts for the largest part of the non-
randomness of the data, dimension 2, the next largest, etc.) The first he calls
“Involved versus Informational Production”. Texts getting high positive scores
are typically spoken and typically conversations. Texts getting high negative
scores are academic prose and official documents. The linguistic features
with the highest positive weightings are “private” verbs (assume, believe etc.),
that-deletion, contractions, present tense verbs, and second person pronouns.
The linguistic features with the highest negative weightings are nouns, word
length, prepositions, and type-token ratio. The two books cited above present
the case for the explanatory power of the multidimensional approach.

Any text can be given a score for any dimension, by counting the numbers
of occurrences of the linguistic features in the text, weighting, and summing.
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The approach offers the possibility of “triangulation”, placing a text within
the space of English language variation, in a manner comparable to MCCA’s
context scores but using linguistic rather than social-science constructs, and
using a statistical procedure rather than theory to identify the dimensions.

The methods described in Section 2 all take each word as a distinct data
point, so each word defines a distinct dimension of a vector describing the
differences. Biber first reduces the dimensionality of the space to a level
where it is manageable by a human, and then offers contrasts between texts,
and comments about what is distinctive about a text, in terms of these seven
dimensions.10 He thereby achieves some generalisation: he can describe how
classes of features behave, whereas the other methods can only talk about
the behaviour of individual words.

5 Discussion

Clearly, people working in the area of measuring what is distinctive about a
text have had a variety of goals. Some have been producing figures prim-
arily for further automatic manipulation, others have had human scrutiny
in mind. Some have been comparing texts with texts, others, texts or corpora
with corpora, and others again have been making comparisons with norms
for the language at large. Some (Biber, Mosteller and Wallace) have looked
more closely at high-frequency, form words; others (McTavish and Pirro,
Dunning, Church and Gale) at medium and low frequency words.

The words in a corpus approximate to a Zipfian distribution, in which the
product of rank order and frequency is constant. So, to a first approxi-
mation, the most common word in a corpus is a hundred times as common
as the hundredth most common, a thousand times as common as the
thousandth, and a million times as common as the millionth. This is a very
skewed distribution. The few very common words have several orders of
magnitude more occurrences than most others. The different ends of the
range tend to have very different statistical behaviour. Thus, as we have
seen, high-frequency words tend to give very high χ2 error terms whereas
very high MI scores come from low-frequency words. Variance, as we have
seen, is almost always greater than the mean, and the ratio tends to increase
with word frequency.

Linguists have long made a distinction approximating to the high/low
frequency contrast: form words (or ‘grammar words’ or ‘closed class words’)
vs. content words (or ‘lexical words’ or ‘open class words’). The relation
between the distinct linguistic behaviour, and the distinct statistical beha-
viour of high-frequency words is obvious yet intriguing.

It would not be surprising if we cannot find a statistic which works well
for both high and medium-to-low frequency words. It is far from clear what
a comparison of the distinctiveness of a very common word and a rare word
would mean.
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6 Finding words that vary across text-type: experiments

In this section I describe two experiments in which the Mann-Whitney ranks
test is used to find words that are systematically used more in one text type
than another.

6.1 LOB-Brown comparison

The LOB and Brown corpora both contain 2,000-word-long texts, so the
numbers of occurrences of a word are directly comparable across all
samples in both corpora. Had all 500 texts from each of LOB and Brown
been used as distinct samples for the purposes of the ranks test, most counts
would have been zero for all but very common words and the test would
have been inapplicable. To make it applicable, it was necessary to agglomer-
ate texts into larger samples. Ten samples for each corpus were used, each
sample comprising 50 texts and 100,000 words. Texts were randomly assigned
to one of these samples (and the experiment was repeated ten times, to give
different random assignments, and the results averaged.) Following some
experimentation, it transpired that most words with a frequency of 30 or
more in the joint LOB and Brown had few enough zeroes for the test to be
applicable, so tests were carried out for just those words, 5,733 in number.

The results were as follows. For 3,418 of the words, the null hypothesis
was defeated (at a 97.5% significance level). In corpus statistics, this sort of
result is not surprising. Few words comply with the null hypothesis, but then,
as discussed above, the null hypothesis has little appeal: there is no intrinsic
reason to expect any word to have exactly the same frequency of occurrence
on both sides of the Atlantic. We are not in fact concerned with whether the
null hypothesis holds: rather, we are interested in the words that are furthest
from it. The minimum and maximum possible values for the statistic were
55 and 155, with a mean of 105, and we define a threshold for ‘significantly
British’ (sB) of 75, and for ‘significantly American’ (sA), of 135.

The distribution curve was bell-shaped, one tail being sA and the other
sB. There were 216 sB words and 288 sA words. They showed the same
spread of frequencies as the whole population: the inter-quartile range for
joint frequencies for the whole population was 44–147; for the sA it was
49–141 and for sB, 58–328. In contrast to the chi-square test, frequency-
related distortion is avoided.

The sA and sB words were classified as in Table 4, according to a scheme
close to that of Leech and Fallon (1992).

The items with distinct spellings occupied the extreme tails of the distribu-
tion. All other items were well distributed.

The first four categories serve as checks: had the items in these classes
not been identified as sA and sB, the method would not have been working.
It is the items in the ‘others’ category which are interesting. The three
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highest-scoring sA ‘others’ are entire, several and location. None of these are
identified as particularly American (or as having any particularly American
uses) in any of four 1995 learners’ dictionaries of English (LDOCE3,
OALDCE5, CIDE, COBUILD2) all of which claim to cover both varieties
of the language. Of course it does not follow from the frequency difference
that there is a semantic or other difference that a dictionary should mention,
but the ‘others’ list does provide a list of words for which linguists or lexico-
graphers might want to examine whether there is some such difference.

6.2 Male/female conversation

The spoken, conversational part of the BNC was based on a demographic
sample of the UK population, sampled for age, gender, region and social
class. It is a rich resource for investigating how speech varies across these
parameters. For details of its composition and collection see Crowdy (1993),
Rayson, Leech, and Hodges (1997). Here we use it as a resource for explor-
ing male/female differences, and for contrasting lists of most different words
gathered using χ2 with those gathered using the Mann-Whitney test.

Speaker turns where the gender of the speaker was available were identi-
fied, giving two corpora, one of male speech (M), the other, of female (F).
Each corpus was divided into 25,000-word chunks. The order of texts in the
BNC was retained in M and F, and the chunking took, first, the first 25,000
words, then the next 25,000, and so on, so the text relating to a single
conversation would never be found in more than two chunks. The organisa-
tion of the BNC also ensured that a single speaker’s words were unlikely to
occur in more than two chunks. There were 31 M chunks and 50 F chunks.
These chunks were then randomly combined into 150,000 word ‘slices’,
giving five M slices and eight F slices. For each word with frequency of 20
or greater in M and F combined, the frequency in each slice was calculated,
frequencies were ranked, and the Mann-Whitney statistic was calculated
twice, once with the M slice always given the higher rank in cases of ties,
once with the F, and the average taken.

Table 4 Classes of significantly British, and significantly American, words from
the LOB/Brown comparison.

Mnemonic Example sA sB

Spelling color/colour; realise/realize 30 23
Equivalent toward/towards; flat/apartment 15 17
Name los, san, united; london, africa, alan 45 24
Cultural negro, baseball, jazz; royal, chap, tea 38 26
Format e, m, w 6 10
Other 154 116

Totals 288 216
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Table 5 Mann-Whitney “consistently male” and “consistency female” words,
compared with Rayson et al. lists.

M (MW) M (Ray) F (MW) F (Ray)

a a Alice and
against ah apples because
ah aye child Christmas
Ahhh do children cos
bloke er clothes did
can four cooking going
Dad fuck curtains had
Er fucking dish he
fast guy her her
itself hundred hers him
mate is husband home
one mate kitchen I
quid no likes lovely
record number Liz me
right of lounge mm
shoot okay made n’t
shot one morning nice
slowly quid ours oh
square right She really
That that she said
The the shopping school
These three such she
This two thinks think
virtually which thought thought
way yeah wardrobe to

The 25 words which are most consistently more common in M and F are
presented in Table 5, alongside the equivalent lists from Rayson et al.11 All
lists have been alphabeticised, for ease of comparison. Of the 25 commonest
words in the joint corpus (unnormalised for case), twelve are in Rayson
et al.’s lists, whereas just one (a) is in either of the Mann-Whitney lists.
The Rayson et al. lists display a bias towards high-frequency items which is
not generally useful for corpus linguistics and which the Mann-Whitney lists
do not share.

7 Measures for similarity and homogeneity

The explorations described above have skirted around the issue of corpus
similarity, looking at particular ways in which corpora are notably different.
In the remainder of the paper, we look directly at corpus similarity, and
particularly at how it might be measured.

What are the constraints on a measure for corpus similarity? The first is
simply that its findings correspond to unequivocal human judgements. It
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must match our intuition that, for instance, a corpus of syntax papers is
more like one of semantics papers than one of shopping lists. The constraint
is key but is weak. Direct human intuitions on corpus similarity are not easy
to come by, firstly, because large corpora, unlike coherent texts, are not the
sorts of things people read, so people are not generally in a position to have
any intuitions about them. Secondly, a human response to the question,
“how similar are two objects”, where those objects are complex and multi-
dimensional, will themselves be multi-dimensional: things will be similar
in some ways and dissimilar in others. To ask a human to reduce a set of
perceptions about the similarities and differences between two complex
objects to a single figure is an exercise of dubious value.

This serves to emphasise an underlying truth: corpus similarity is com-
plex, and there is no absolute answer to “is Corpus 1 more like Corpus 2
than Corpus 3?”. All there are are possible measures which serve particular
purposes more or less well. Given the task of costing the customisation of
an NLP system, produced for one domain, to another, a corpus similarity
measure is of interest insofar as it predicts how long the porting will take. It
could be that a measure which predicts well for one NLP system, predicts
badly for another. It can only be established whether a measure correctly
predicts actual costs, by investigating actual costs.12

Having struck a note of caution, we now proceed on the hypothesis that
there is a single measure which corresponds to pre-theoretical intuitions
about ‘similarity’ and which is a good indicator of many properties of
interest— customisation costs, the likelihood that linguistic findings based
on one corpus apply to another, etc. We would expect the limitations of the
hypothesis to show through at some point, when different measures are
shown to be suited to different purposes, but in the current situation,
where there has been almost no work on the question, it is a good starting
point.

7.1 Similarity and homogeneity

How homogeneous is a corpus? The question is both of interest in its own
right, and is a preliminary to any quantitative approach to corpus similar-
ity. In its own right, because a sublanguage corpus, or one containing only
a specific language variety, has very different characteristics to a general
corpus (Biber 1993b) yet it is not obvious how a corpus’s position on this
scale can be assessed. It is of interest as a preliminary to measuring corpus
similarity, because it is not clear what a measure of similarity would mean if
a homogeneous corpus (of, e.g., software manuals) was being compared
with a heterogeneous one (e.g., Brown). Ideally, the same measure can be
used for similarity and homogeneity, as then, Corpus 1/Corpus 2 distances
will be directly comparable with heterogeneity (or “within-corpus distances”)
for Corpus 1 and Corpus 2. This is the approach adopted here.
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Like corpus distance, heterogeneity is multi-dimensional, and, in looking
for a single measure for it, we are inevitably ignoring much. Two aspects
which will be combined within any single measure are the heterogeneity that
arises from a corpus comprising texts of different types, and the heterogene-
ity that arises from a single text type, where, for instance, a wide variety of
grammar and lexis is used. These are clearly different things, and it would
be desirable to develop measures which address them separately, but that
remains as future work.

Some of the permutations of homogeneity and similarity scores, and their
interpretations, are shown in Table 6. In the table, high scores means a large
distance between corpora, or large within-corpus distances, so the corpus is
heterogeneous or the corpora are dissimilar; low, that the distances are low,
so the corpus is homogeneous, or the corpora are similar. (Thus we have
a distance measure rather than a similarity measure, which would have
opposite polarity.) High, low and equal are relative to the other columns in
the same row. In row 1, all three scores are equal, implying that both corpora
are of the same text type. In row 2, ‘equal’ in the first two columns reads
that the within-corpus distance (homogeneity) of Corpus 1 is roughly equal
to the within-corpus distance of Corpus 2, and ‘high’ in the Distance
column reads that the distance between the corpora is substantially higher
than these within-corpus distances. Thus a comparison between the two
corpora is straightforward to interpret, since the two corpora do not differ
radically in their homogeneity, and the outcome of the comparison is that
they are of markedly different language varieties.

Not all combinations of homogeneity and similarity scores are logically
possible. For example, two corpora cannot be much more similar to each
other than either is to itself (row 3).

Rows 4 and 5 indicate two of the possible outcomes when a relatively
heterogeneous corpus (corpus 1) is compared with a relatively homogeneous
one (corpus 2). It is not possible for the distance between the corpora to be

Table 6 Interactions between homogeneity and similarity: a similarity measure can
only be interpreted with respect to homogeneity.

Corpus 1 Corpus 2 Distance Interpretation

1 equal equal equal same language variety/ies
2 equal equal high different language varieties
3 high high low impossible
4 high low high corpus 2 is homogeneous and falls

within the range of corpus 1
5 high low higher corpus 2 is homogeneous and falls

outside the range of corpus 1
6 low low slightly higher similar varieties
7 high high slightly higher overlapping; share some varieties
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much lower than the heterogeneity of the more heterogeneous corpus 1. If
the distance is roughly equal to corpus 1 heterogeneity, the interpretation is
that corpus 2 falls within the range of corpus 2; if it is higher, it falls outside.

The last two rows point to the differences between general corpora and
specific corpora. High and low values in the first two columns are to be
interpreted relative to norms for the language. Particularly high within-
corpus distance scores will be for general corpora, which embrace a number
of language varieties. Corpus similarity between general corpora will be a
matter of whether all the same language varieties are represented in each
corpus, and in what proportions. Low within-corpus distance scores will
typically relate to corpora of a single language variety, so here, scores may
be interpreted as a measure of the distance between the two varieties.

7.2 Related work

There is very little work which explicitly aims to measure similarity between
corpora. The one clearly relevant item is Johansson anf Hofland (1989),
which aims to find which genres, within the LOB corpus, most resemble each
other. They take the 89 most common words in the corpus, find their rank
within each genre, and calculate the Spearman rank correlation statistic
(‘spearman’):

Rose, Haddock, and Tucker (1997) explore how performance of a speech
recognition system varies with the size and specificity of the training data
used to build the language model. They have a small corpus of the target
text type, and experiment with ‘growing’ their seed corpus by adding more
same-text-type material. They use Spearman and log-likelihood (Dunning
1993) as measures to identify same-text-type corpora. Spearman is evalu-
ated below.

Sekine (1997) explores the domain dependence of parsing. He parses
corpora of various text genres and counts the number of occurrences
of each subtree of depth one. This gives him a subtree frequency list for
each corpus, and he is then able to investigate which subtrees are markedly
different in frequency between corpora. Such work is highly salient for
customising parsers for particular domains. Subtree frequencies could
readily replace word frequencies for the frequency-based measures below.

In information-theoretic approaches, perplexity is a widely-used measure.
Given a language model and a corpus, perplexity “is, crudely speaking, a
measure of the size of the set of words from which the next word is chosen
given that we observe the history of [ . . . ] words” (Roukos 1996). Perplexity
is most often used to assess how good a language modelling strategy is,
so is used with the corpus held constant. Achieving low perplexity in the
language model is critical for high-accuracy speech recognition, as it means
there are fewer high-likelihood candidate words for the speech signal to be
compared with.
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Perplexity can be used to measure a property akin to homogeneity if the
language modelling strategy is held constant and the corpora are varied. In
this case, perplexity is taken to measure the intrinsic difficulty of the speech
recognition task: the less constraint the domain corpus provides on what the
next word might be, the harder the task. Thus Roukos (1996) presents a
table in which different corpora are associated with different perplexities.
Perplexity measures are evaluated below.

8 “Known-Similarity Corpora”

Proposing measures for corpus similarity is relatively straightforward:
determining which measures are good ones, is harder. To evaluate the
measures, it would be useful to have a set of corpora where similarities
were already known. In this section, we present a method for producing
a set of “Known-Similarity Corpora” (KSC).

A KSC-set is built as follows: two reasonably distinct text types, A and
B, are taken. Corpus 1 comprises 100% A; Corpus 2, 90% A and 10% B;
Corpus 3, 80% A and 20% B; and so on. We now have at our disposal
a set of fine-grained statements of corpus similarity: Corpus 1 is more like
Corpus 2 than Corpus 1 is like Corpus 3. Corpus 2 is more like Corpus 3
than Corpus 1 is like Corpus 4, etc. Alternative measures can now be evalu-
ated, by determining how many of these ‘gold standard judgements’ they
get right. For a set of n Known-Similarity Corpora there are
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gold standard judgements (see Appendix 1 for proof) and the ideal measure
would get all of them right. Measures can be compared by seeing what
percentage of gold standard judgements they get right.

Two limitations on the validity of the method are, first, there are different
ways in which corpora can be different. They can be different because each
represents one language variety, and these varieties are different, or because
they contain different mixes, with some of the same varieties. The method
only directly addresses the latter model.

Second, if the corpora are small and the difference in proportions
between the corpora is also small, it is not clear that all the ‘gold standard’
assertions are in fact true. There may be a finance supplement in one of the
copies of the Guardian in the corpus, and one of the copies of Accountancy
may be full of political stories: perhaps, then, Corpus 3 is more like Corpus
5 than Corpus 4. It is necessary to address this by selecting the two text
types with care so they are similar enough so the measures are not all
100% correct yet dissimilar enough to make it likely that all gold-standard
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judgements are true, and by ensuring there is enough data and enough
KSC-sets so that oddities of individual corpora do not obscure the picture
of the best overall measure.

9 Experiment to evaluate measures

We now describe an experiment in which KSC-sets were used to evaluate
four candidate measures for corpus similarity.

9.1 The measures

All the measures use spelled forms of words. None make use of linguistic
theories. The comment has been made that lemmas, or word senses, or
syntactic constituents, were more appropriate objects to count and perform
computations on than spelled forms. This would in many ways be desirable.
However there are costs to be considered. To count, for example, syntactic
constituents requires, firstly, a theory of what the syntactic constituents are;
secondly, an account of how they can be recognised in running text; and
thirdly, a program which performs the recognition. Shortcomings or bugs
in any of the three will tend to degrade performance, and it will not be
straightforward to allocate blame. Different theories and implementations
are likely to have been developed with different varieties of text in focus, so
the degradation may well affect different text types differently. Moreover,
practical users of a corpus-similarity measure cannot be expected to invest
energy in particular linguistic modules and associated theory. To be of gen-
eral utility, a measure should be as theory-neutral as possible.

In these experiments we consider only raw word-counts. Two word
frequency measures were considered. For each, the statistic did not dictate
which words should be compared across the two corpora. In a preliminary
investigation we had experimented with taking the most frequent 10, 20,
40 . . . 640, 1280, 2560, 5120 words in the union of the two corpora as data
points, and had achieved the best results with 320 or 640. For the experiments
below, we used the most frequent 500 words.

Both word-frequency measures can be directly applied to pairs of corpora,
but only indirectly to measure homogeneity. To measure homogeneity:

1 divide the corpus into ‘slices’;
2 create two subcorpora by randomly allocating half the slices to each;
3 measure the similarity between the subcorpora;
4 iterate with different random allocations of slices;
5 calculate mean and standard deviation over all iterations.

Wherever similarity and homogeneity figures were to be compared, the
same method was adopting for calculating corpus similarity, with one
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subcorpus comprising a random half of Corpus 1, the other, a random half
of Corpus 2.

9.1.1 Spearman rank correlation co-efficient

Ranked wordlists are produced for Corpus 1 and Corpus 2. For each of
the n most common words, the difference in rank order between the two
corpora is taken. The statistic is then the normalised sum of the squares of
these differences,
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9.1.2 Comment

Spearman is easy to compute and is independent of corpus size: one can
directly compare ranked lists for large and small corpora. However the
following objection seemed likely to play against it. For very frequent words,
a difference of rank order is highly significant: if the is the most common
word in corpus 1 but only third in corpus 2, this indicates a high degree of
difference between the genres. But at the other end of the scale, the opposite
is the case: if bread is in 400th position in the one corpus and 500th in the
other, this is of no significance; yet Spearman counts the latter as far more
significant than the former.

χ2

For each of the n most common words, we calculate the number of occur-
rences in each corpus that would be expected if both corpora were random
samples from the same population. If the size of corpora 1 and 2 are N1,
N2 and word w has observed frequencies oω,1, oω, 2, then expected value
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9.1.3 Comment

The inspiration for the statistic comes from the χ2-test for statistical inde-
pendence. As shown above, the statistic is not in general appropriate for
hypothesis-testing in corpus linguistics: a corpus is never a random sample
of words, so the null hypothesis is of no interest. But once divested of the
hypothesis-testing link, χ2 is suitable. The (o – e)2/e term gives a measure of
the difference in a word’s frequency between two corpora, and the measure
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tends to increase slowly with word frequency in a way that is compatible
with the intuition that higher-frequency words are more significant in
assessments of corpus similarity that lower-frequency ones.

The measure does not directly permit comparison between corpora of
different sizes.

9.1.4 Perplexity and cross-entropy

From an information-theoretic point of view, prima facie, entropy is a well
defined term capturing the informal notion of homogeneity, and the cross-
entropy between two corpora captures their similarity. Entropy is not a
quantity that can be directly measured. The standard problem for statistical
language modelling is to aim to find the model for which the cross-entropy
of the model for the corpus is as low as possible. For a perfect language
model, the cross-entropy would be the entropy of the corpus (Church and
Mercer 1993, Charniak 1993).

With language modelling strategy held constant, the cross-entropy of a
language model (LM) trained on Corpus 1, as applied to Corpus 2, is
a similarity measure. The cross-entropy of the LM based on nine tenths
of Corpus 1, as applied to the other ‘held-out’ tenth, is a measure of
homogeneity. We standardised on the ‘tenfold cross-validation’ method
for measures of both similarity and homogeneity: that is, for each corpus,
we divided the corpus into ten parts13 and produced ten LMs, using nine
tenths and leaving out a different tenth each time. (Perplexity is the log
of the cross-entropy of a corpus with itself: measuring homogeneity as self-
similarity is standard practice in information theoretic approaches.)

To measure homogeneity, we calculated the cross-entropy of each of these
LMs as applied to the left-out tenth, and took the mean of the ten values.
To measure similarity, we calculated the cross-entropy of each of the
Corpus 1 LMs as applied to a tenth of Corpus 2 (using a different tenth
each time). We then repeated the procedure with the roles of Corpus 1 and
Corpus 2 reversed, and took the mean of the 20 values.

All LMs were trigram models. All LMs were produced and calculations
performed using the CMU/Cambridge toolkit (Rosenfeld 1995).

The treatment of words in the test material but not in the training mater-
ial was critical to our procedure. It is typical in the language modelling
community to represent such words with the symbol UNK, and to calculate
the probability for the occurrence of UNK in the test corpus using one of
three main strategies.

Closed vocabulary The vocabulary is defined to include all items in train-
ing and test data. Probabilities for those items that occur in training but not
test data, the ‘zerotons’, are estimated by sharing out the probability mass
initially assigned to the singletons and doubletons to include the zerotons.
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Open, type 1 The vocabulary is chosen independently of the training and
test data, so the probability of UNK may be estimated by counting the
occurrence of unknown words in the training data and dividing by N
(the total number of words).
Open, type 2 The vocabulary is defined to include all and only the training
data, so the probability of UNK cannot be estimated directly from the
training data. It is estimated instead using the discount mass created by
the normalisation procedure.

All three strategies were evaluated.

9.2 Data

All KSC sets were subsets of the British National Corpus (BNC). A number
of sets were prepared as follows.

For those newspapers or periodicals for which the BNC contained over
300,000 running words of text, word frequency lists were generated and
similarity and homogeneity were calculated (using χ2; results are shown in
Appendix 2.) We then selected pairs of text types which were moderately
distinct, but not too distinct, to use to generate KSC sets. (In initial experi-
ments, more highly distinct text types had been used, but then both Spearman
and χ2 had scored 100%, so ‘harder’ tests involving more similar text types
were selected.)

For each pair a and b, all the text in the BNC for each of a and b was
divided into 10,000-word tranches. These tranches were randomly shuffled
and allocated as follows:

first 10 of a into b0a
next 9 of a, first 1 of b into b1a
next 8 of a, next 2 of b into b2a
next 7 of a, next 3 of b into b3a
. . .

until either the tranches of a or b ran out, or a complete eleven-corpus KSC-
set was formed. A sample of KSC sets are available is the web.14 There were
21 sets containing between 5 and 11 corpora. The method ensured that
the same piece of text never occurred in more than one of the corpora in a
KSC set.

The text types used were:

Accountancy (acc); The Art Newspaper (art); British Medical Journal
(bmj); Environment Digest (env); The Guardian (gua); The Scotsman
(sco); and Today (‘low-brow’ daily newspaper, tod).

To the extent that some text types differ in content, whereas others differ
in style, both sources of variation are captured here. Accountancy and The
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Art Newspaper are both trade journals, though in very different domains,
while The Guardian and Today are both general national newspapers, of
different styles.

9.3 Results

For each KSC-set, for each gold-standard judgement, the ‘correct answer’
was known, e.g., “the similarity 1,2 is greater than the similarity 0,3”. A
given measure either agreed with this gold-standard statement, or disagreed.
The percentage of times it agreed is a measure of the quality of the measure.
Results for the cases where all four measures were investigated are presented
in Table 7.

Table 7 Comparison of four measures.

spear χ 2 closed type 1 type 2

KSC-set
acc-gua 93.33 91.33 82.22 81.11 80.44
art-gua 95.60 93.03 84.00 83.77 84.00
bmj-gua 95.57 97.27 88.77 89.11 88.77
env-gua 99.65 99.31 87.07 84.35 86.73

The word frequency measures outperformed the perplexity ones. It is
also salient that the perplexity measures required far more computation:
ca. 12 hours on a Sun, as opposed to around a minute.

Spearman and χ2 were tested on all 21 KSC-sets, and χ2 performed better
for 13 of them, as shown in Table 8.

Table 8 Spearman/χ2 comparison on all KSCs.

spear χ 2 tie total

Highest score 5 13 3 21

The difference was significant (related t-test: t = 4.47, 20DF, significant at
99.9% level). χ2 was the best of the measures compared.

10 Conclusions and further work

Corpus linguistics lacks a vocabulary for talking quantitatively about
similarities and differences between corpora. The paper aims to begin to
meet this need.

One way of describing differences between corpora is by highlighting the
words which have consistently been used more in the one corpus that
the other. This is a matter that has been looked at by a variety of authors, in
a variety of disciplines, and the methods which have been developed are
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reviewed. At a first pass, it may appear that the χ2-test is suitable for identi-
fying the words which are used most differently, but we show that this is not
the case. A more suitable test is the Mann-Whitney ranks test. This test was
used to compare the Brown and LOB corpora, and the male and female
conversational components of the BNC; the results are presented.

We then address the more ambitious goal of measuring corpus similar-
ity. We argue that corpus linguistics is in urgent need of such a measure:
without one, it is very difficult to talk accurately about the relevance of find-
ings based on one corpus, to another, or to predict the costs of porting an
application to a new domain. We note that corpus similarity is complex and
multifaceted, and that different measures might be required for different
purposes. However, given the paucity of other work in the field, at this stage
it is enough to seek a single measure which performs reasonably.

The Known-Similarity Corpora method for evaluating corpus-similarity
measures was presented, and measures discussed in the literature were
compared using it. For the corpus-size used and this approach to evalua-
tion, χ2 and Spearman both performed better than any of three cross-entropy
measures. These measures have the advantage that they are cheap and
straightforward to compute. χ2 outperformed Spearman.

Thus χ2 is presented as a suitable measure for comparing corpora, and is
shown to be the best measure of those tested. It can be used for measuring
the similarity of a corpus to itself, as well as the similarity of one corpus to
another, and this feature is valuable as, without self-similarity as a point of
reference, a measure of similarity between corpora is uninterpretable.

There are, naturally, some desiderata it does not meet. Unlike cross-
entropy, it is not rooted in a mathematical formalism which provides the
prospect of integrating the measure with some wider theory. Also, an ideal
measure would be scale-independent, supporting the comparison of small
and large corpora. This is an area for future work.
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Appendix 1

The proof is based on the fact that the number of similarity judgements is the
triangle number of the number of corpora in the set (less one), and that each new
similarity judgement introduces a triangle number of gold standard judgements (once
an ordering which roles out duplicates is imposed on gold standard judgements).
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• A KSC set is ordered according to the proportion of text of type 1. Call the
corpora in the set 1 . . . n.

• A similarity judgement (‘sim’) between a and b (a, b) compares two corpora. To
avoid duplication, we stipulate that a < b. Each sim is associated with a number
of steps of difference between the corpora: dif(a, b) = b – a.

• A gold standard judgement (‘gold’) compares two sims; there is only a gold
between a, b and c, d if a < b and c < d (as stipulated above) and also if a <= c,
b >= d, and not (a = c and b = d ). Each four-way comparison can only give rise
to zero or one gold, as enforced by the ordering constraints. Each gold has a
difference of difs (‘difdif’) of (b – a) – (d – c) (so, if we compare 3, 5 with 3,
4, difdif = 1, but where we compare 2, 7 with 3, 4, difdif = 4). difdif(X, Y ) =
dif(X ) – dif(Y ).

• Adding an nth corpus to a KSC set introduces n – 1 sims. Their difs vary from
1 (for (n – 1), n) to n – 1 (for 1, n).

• The number of golds with a sim of dif m as first term is a triangle number less

one, ∑ m
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Appendix 2
Subcorpora were extracted from the BNC for all document sources for which there
was a large quantity of data. Table l0 shows the distance and heterogeneity scores
(based on the 500 most common words in the joint corpus) for twelve of these
sources (as described in Table 9). The numbers presented are χ2-scores normalised
by the degrees of freedom (“Chi-by-degrees-of-freedom” or CBDF).

Table 9 Corpora for first experiment.

Short Title Description

GUA The Guardian Broadsheet national newspaper
IND The Independent Broadsheet national newspaper
DMI Daily Mirror Tabloid national newspaper
NME New Musical Express Weekly pop/rock music magazine
FAC The Face Monthly fashion magazine
ACC Accountancy Accountancy periodical
DNB Dictionary of National Biography Comprises short biographies
HAN Hansard Proceedings of Parliament
BMJ British Medical Journal Academic papers on medicine
GRA Computergram Electronic computer-trade newsletter
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Table 10 CBDF homogeneity and similarity scores for twelve 200,000-word corpora.

ACC ART BMJ DMI DNB ENV FAC GRA GUA HAN IND NME

ACC 4.62
ART 21.40 3.38
BMJ 20.16 23.50 8.08
DMI 21.56 26.19 32.08 2.47
DNB 40.56 30.07 40.14 35.15 1.86
ENV 22.68 23.10 28.12 34.65 41.50 2.60
FAC 20.49 25.14 31.14 7.76 36.92 36.93 3.43
GRA 27.75 29.96 33.50 31.40 45.26 28.96 34.35 2.20
GUA 14.06 18.37 22.68 11.41 31.06 23.24 12.04 32.25 3.92
HAN 24.13 33.76 33.00 32.14 52.25 32.03 31.23 36.21 22.62 3.65
IND 12.76 17.83 22.96 13.96 30.10 21.69 14.45 28.06 4.11 23.27 4.44
NME 21.18 25.99 30.05 9.77 39.41 34.77 5.84 31.39 15.09 33.25 16.56 3.10

Note that the lowest distances are between the Guardian and the Independent
(two broadsheet newspapers) and between NME and The Face (a pop/rock music
magazine and a style magazine).

Heterogeneity scores are generally lower than distance scores. The Dictionary of
National Biography, which comprises paragraph-long biographies in a fairly stand-
ardised form, is the most homogeneous, but is very unlike any other source. The
most academic source, British Medical Journal, is by far the least homogeneous.

Notes

1 Alternative names for the field (or a closely related one) are “empirical lin-
guistics” and “data-intensive linguistics”. By using an adjective rather than a
noun, these seem not to assert that the corpus is an object of study. Perhaps it is
equivocation about what we can say about corpora that has led to the coining of
the alternatives.

2 Provided all expected values are over a threshold of 5.
3 See http://info.ox.ac.uk/bnc
4 In this case the null hypothesis is true, so the average value of the sum of the

error terms over the four cells of the contingency table is 1 (from the definition of
the χ2 distribution). Of the four cells, the two error-terms associated with the
absence of the word (cells c and d in Table 1) will be vanishingly small, as E is
large—almost as large as the number of words in the corpus—whereas (|O – E |
– 0.5)2 is small, so the result of dividing it by E is vanishingly small. The two cells
corresponding to the presence of the word (cells a and b in Table 1) will both
have the same average value, since, by design, the two corpora are the same size.
Thus the four-way sum is effectively shared between cells a and b, so the average
value of each is 0.5.

5 The usage of the term “mutual information” within information theory is different:

    
MI X Y

p x y
p x p yx y( ; )   log

( , )
( ) ( )

.,= ∑  However, in language engineering, the Church–

Hanks definition has been widely adopted so here, MI will refer to that simpler
term.

6 Several corpus interface packages provide functionality for computing one or
more of these statistics. For example, WordSmith (Scott 1997 and Sardinha
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1996) and the associated KeyWords tool allows the user to generate lists using
Mutual Information, chi-square and log-likelihood.

7 We assume full-text searching. Also, issues such as stemming and stop lists are
not considered, as they do not directly affect the statistical considerations.

8 They also provide a ‘tuning constant’ for adjusting the relative weight given to
TF and IDF to optimise performance.

9 Figures based on the standard-document-length subset of the BNC described
above.

10 Reducing the dimensionality of the problem has also been explored in IR: see
Schütze and Pederson (1995), Dumais et al. (1988).

11 Rayson et al. The comparisons are normalised for case, so this is one point at
which direct comparison is not possible.

12 Cf. Ueberla (1997), who looks in detail at the appropriateness of perplexity as a
measure of task difficulty for speech recognition, and finds it wanting.

13 For the KSC corpora, we ensured that each tenth had an appropriate mix of text
types, so that, e.g. each tenth of a corpus comprising 70% Guardian, 30% BMJ,
also comprised 70% Guardian, 30% BMJ.

14 http://www.itri.bton.ac.uk/∼Adam.Kilgarriff/KSC/
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